Numpy tutorial
1. Create an array of 6 zeros
import numpy
as np np.zeros(6)
array([0., 0., 0., 0., 0., 0.])
import numpy as np
np.ones(6)
O/p:
array([1., 1., 1., 1., 1., 1.])
import numpy as np np.ones(6)*5
O/p:
array([5., 5., 5., 5., 5., 5.])
4. Create an array of integers from 1 to 99
import numpy as npnp.arange(100)
O/p:
array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33,
34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53,
54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73,
74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93,
94, 95, 96, 97, 98, 99])
5. Create an array of all the odd integers ranging from
1 to 99
import numpy as npa = 100arr2 = []for i in range(a):
if i %2 !=0: arr2.append(i)arr2 = np.array(arr2)
arr2
O/p:
array([ 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25,
27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65,
67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99])
6. Create a 2X2 matrix filled with values from 1 to 4
import numpy as npx = np.arange(1, 5).reshape(2,2)
x
O/p:
array([[1, 2], [3, 4]])
import numpy as npx = np.arange(9, 18).reshape(3,3)
x
O/p:
array([[ 9, 10, 11], [12, 13, 14], [15, 16, 17]])
import numpy as nparr6 = np.identity(4, dtype = int)
print(arr6)
O/p:
[[1 0 0 0] [0 1 0 0] [0 0 1 0] [0 0 0 1]]
9.With the help of NumPy generate a random nos in between 0 to 1
arr7 = np.random.randint(0, 1,5)
arr7
O/p:
array([0, 0, 0, 0, 0])
10. Create 10 points that are space linearly from
each.
import numpy as npx1 = np.linspace(0, 4,10)
x1
O/p:
array([0. , 0.44444444, 0.88888889, 1.33333333,
1.77777778, 2.22222222, 2.66666667, 3.11111111, 3.55555556, 4. ])
11. Compare two 3d array and display the results in terms of true and false
import numpy as np
arr1 = np.random.randint(1, 8, size = (3, 5))
arr2 = np.random.randint(1, 9, size = (3, 5))
print('-----Two Dimensional Random Array----')
print('Values in arr1 = \n', arr1)
print('Values in arr2 = \n', arr2)
print('Result of arr1 == arr2 = \n', arr1 == arr2)
print('equal(arr1, arr2) = \n', np.equal(arr1, arr2))
print('Values in arr2 = \n', arr2)
print('Result of arr1 == arr2 = \n', arr1 == arr2)
print('equal(arr1, arr2) = \n', np.equal(arr1, arr2))
O/p:
12. Create a null vector of size 20 where the 6th
value should be 0
import numpy as nparr9 = np.arange(1,21)
print(arr9)arr9[6] = 0
print("After Updating the 6th position")
print(arr9)
O/p:
[ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20]
After Updating the 6th position
[ 1 2 3
4 5 6 0 8 9 10 11 12 13 14 15 16 17 18 19 20]
13. Reverse an array of size 100 using numpy.
arr10 = np.arange(0,100)
arr10
arr10 = arr10[::-1]
arr10
O/p:
array([99, 98, 97, 96, 95, 94, 93, 92, 91, 90, 89, 88,
87, 86, 85, 84, 83, 82, 81, 80, 79, 78, 77, 76, 75, 74, 73, 72, 71, 70, 69, 68,
67, 66, 65, 64, 63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, 50, 49, 48,
47, 46, 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, 33, 32, 31, 30, 29, 28,
27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8,
7, 6, 5, 4, 3, 2, 1, 0])
14. Find the minimum and maximum values of a 20X20
array using numpy.
import numpy as np
arr11 = np.arange(0,400)
arr11.reshape(20,20)
print(arr11)
print("\n")
print("The maximum value in 20*20 array:
",max(arr11))
print("\n")
print("The minimum value in 20*20 array:
",min(arr11))
arr12 = np.random.randint(0,50,size= 50)
print(arr12)
print("\n")
print("Size of randomly generated array:
",len(arr12))
print("\n")
x = np.mean(arr12)
print("mean value of a randomly generated array
of size 50: ",x)
[19 25 22 3 29 10 48 47 1 49 34 46 33 5 1 2 2 10 23 39
30 6 32 12 14 47 19 46 14 41 26 22 47 33 9 38 39 41 14 48 28 38 48 31 19 7 46 8
41 44]
Size of the randomly generated array: 50
mean value of a randomly generated array of size 50:
26.72
16. A 20 X20 array filled with zeros at all borders
and all 1’s inside”-create such an array.
import numpy as nparr13 = np.zeros((20,20))
print("Original array:")
print("\n")
print(arr13)
print("\n")
print("A 20 X20 array filled with zeros at all
borders and all 1’s inside")
print("\n")arr13[1:-1,1:-1] = 1
print(arr13)
Original array:
17. Create an array of size 10X10 with 10 element
valued as nan
import numpy as np
arr13 = np.empty((10, 10 ))
arr13[:] = np.NaN
print(arr13)
O/p:
[[nan nan nan nan nan nan nan nan nan nan]
[nan nan nan nan nan nan nan nan nan nan]
[nan nan nan nan nan nan nan nan nan nan]
[nan nan nan nan nan nan nan nan nan nan]
[nan nan nan nan nan nan nan nan nan nan]
[nan nan nan nan nan nan nan nan nan nan]
[nan nan nan nan nan nan nan nan nan nan]
[nan nan nan nan nan nan nan nan nan nan]
[nan nan nan nan nan nan nan nan nan nan]
[nan nan nan nan nan nan nan nan nan nan]]
18. Create a 4X4 matrix and the values just below the
diagonal is 9 8 7
import numpy as nparr14 = np.ones((4,4),dtype = int)
print("Before Updating the Diagonal
Elements:")
print("\n",arr14)arr14 = np.diag([9,8,7],-1)
print("\nAfter Updating")
print("\n",arr14)
O/p:
Before Updating the Diagonal Elements:
[[1 1 1 1]
[1 1 1 1]
[1 1 1 1]
[1 1 1 1]]
After Updating
[[0 0 0 0]
[9 0 0 0]
[0 8 0 0]
[0 0 7 0]]
19. Create a checkboard pattern using numpy
chess_board = np.ones((8,8),dtype=int)
chess_board[1::2, ::2]= 0
chess_board[::2, 1::2] = 0
print(chess_board)
O/p:
[[1 0 1 0 1 0 1 0]
[0 1 0 1 0 1 0 1]
[1 0 1 0 1 0 1 0]
[0 1 0 1 0 1 0
1]
[1 0 1 0 1 0 1 0]
[0 1 0 1 0 1 0
1]
[1 0 1 0 1 0 1 0]
[0 1 0 1 0 1 0 1]]
20. Print the dtype of int32 and float64 data type
arr2 = np.array([2,4,5,6,7,8,7,9,56], dtype =
np.float64)
arr2.dtype
dtype('float64')
arr3 = np.array([2,4,5,6,7,8,7,9,56], dtype =
np.int32)
arr3.dtype
dtype('int32')
21. An
empty numpy array
arr = np.array([])
print(arr)
O/p:
[]
22. Numpy array filled with all zeros
arr2 = np.zeros(5,
dtype = int)
print(arr2)
O/p:
[0 0 0 0 0]
23. Check a Numpy array has a particular row
arr =
np.random.randint(0, 20, (4, 5))
arr
O/p:
array([[15, 3, 13, 12, 16],
[ 7, 6, 6, 18, 2],
[ 4, 16, 17, 8, 8],
[ 0, 13, 8, 17, 6]])
[7,6,6,18,2] in
arr.tolist()
O/p:
True
[1,2,3,4,5] in arr.tolist()
O/p:
False
24. Delete elements
(+ve) values from a NumPy array
arr3 =
np.random.randint(-10, 10, 10)
arr3
O/p:
array([ 5, -2, 3, -9,
-6, -5, 5, 7, -7, 0])
arr3 = arr3[arr3 < 0]
arr3
O/p:
array([-2, -9, -6,
-5, -7])
25. How to find a particular sequence that has occurred in a Numpy Array
arr4 =
np.random.randint(0, 40, 5)
arr4
O/p:
array([35, 22, 23, 7, 15])
repr(arr4).count("7")
1
26. Search a maximum no of element that is there in a numpy array
arr6 =
np.random.randint(0, 20, 10)
print(arr6)
print(arr6.max())
print(arr6.argmax())
O/p:
[ 6 14 13 6 11 6 9 14 13 17]
17
9
27. Is it possible to merge two 2 dimensional arrays (NumPy)?Do then.
arr1 =
np.random.randint(0, 20, (4, 4))
arr2 =
np.random.randint(0, 20, (4, 4))
arr1
O/p:
array([[11, 12, 0, 16],
[10, 12, 19, 14],
[ 5, 13, 17, 11],
[10, 12, 4, 14]])
arr2
O/p:
array([[17, 4, 14, 0],
[ 0, 16, 15, 0],
[ 7, 0, 14, 10],
[ 5, 18, 2, 0]])
arr3 = np.concatenate((arr1, arr2))
arr3
O/p:
array([[11, 12, 0, 16],
[10, 12, 19, 14],
[ 5, 13, 17, 11],
[10, 12, 4, 14],
[17, 4, 14, 0],
[ 0, 16, 15, 0],
[ 7, 0, 14, 10],
[ 5, 18, 2, 0]])
28. Can you add a border to a NumPy array?Do then.
arr8 = np.ones((5,5))
arr8
O/p:
array([[1., 1., 1., 1., 1.],
[1., 1., 1., 1., 1.],
[1., 1., 1., 1., 1.],
[1., 1., 1., 1., 1.],
[1., 1., 1., 1.,
1.]])
arr8 = np.pad(arr, pad_width=1, constant_values=0)
arr8
O/p:
array([[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0.],
[0., 0., 0., 1., 1.,
1., 1., 1., 0., 0., 0.],
[0., 0., 0., 1., 1.,
1., 1., 1., 0., 0., 0.],
[0., 0., 0., 1., 1.,
1., 1., 1., 0., 0., 0.],
[0., 0., 0., 1., 1.,
1., 1., 1., 0., 0., 0.],
[0., 0., 0., 1., 1.,
1., 1., 1., 0., 0., 0.],
[0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0.]])
29. A comparison of two
NumPy array
arr1 =
np.random.randint(0, 20, (4, 4))
arr1
O/p:
array([[ 5, 2, 5, 4],
[14, 19, 17, 17],
[ 0, 5, 0, 2],
[19, 9, 13, 3]])
arr2 =
np.random.randint(0, 20, (4, 4))
arr2
O/p:
array([[17, 0, 11, 5],
[ 1, 6, 15, 14],
[18, 11, 6, 8],
[ 9, 3, 1, 16]])
arr1 > arr2
O/p:
array([[False, True, False, False],
[ True, True, True,
True],
[False, False, False,
False],
[ True, True, True,
False]])
30. Find the diagonal of
2D NumPy array
arr10 =
np.random.randint(0, 20, (5, 5))
print(arr10)
print(arr10.diagonal())
O/p:
[[11 8 18 4 1]
[ 0 9
7 10 13]
[ 3 13
16 4 16]
[ 9 15
7 5 6]
[ 1 18
9 16 7]]
[11 9 16 5 7]
No comments:
Post a Comment